On the testability of the Károlyházy model
Figurato L., Károlyházy’s original proposal, suggesting that space-time fluctuations could be a source of decoherence in space, faced a significant challenge due to an unexpectedly high emission of radiation (13 orders of magnitude more than what was observed in the latest experiment). To address this issue, we reevaluated Károlyházy’s assumption that the stochastic metric fluctuation must adhere to a wave equation. By considering more general correlation functions of space-time fluctuations, we resolve the problem and consequently revive the aforementioned proposal.
Open Quantum Dynamics: Memory Effects and Superactivation of Backflow of Information
We investigate the divisibility properties of the tensor products (Formula presented.) of open quantum dynamics (Formula presented.) with time-dependent generators. These dynamical maps emerge from a compound open system (Formula presented.) that interacts with its own environment in such a way that memory effects remain when the environment is traced away. This study is motivated by the following intriguing effect: one can have Backflow of Information (BFI) from the environment to (Formula presented.) without the same phenomenon occurring for either (Formula presented.) and (Formula presented.). We shall refer to this effect as the Superactivation of BFI (SBFI).